ΠΦΥ -Εκπαίδευση > Συζητήσεις πάνω σε ιατρικά θέματα

Βιοστατιστική και επιδημιολογία

(1/18) > >>

medicus:
Eur J Epidemiol. 2011 Jun;26(6):433-8

Estimating measures of interaction on an additive scale for preventive exposures.
Knol MJ, VanderWeele TJ, Groenwold RH, Klungel OH, Rovers MM, Grobbee DE.
Source
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, GA, Utrecht, The Netherlands. m.j.knol@umcutrecht.nl

Abstract
Measures of interaction on an additive scale (relative excess risk due to interaction (RERI), attributable proportion (AP), synergy index (S)), were developed for risk factors rather than preventive factors. It has been suggested that preventive factors should be recoded to risk factors before calculating these measures. We aimed to show that these measures are problematic with preventive factors prior to recoding, and to clarify the recoding method to be used to circumvent these problems. Recoding of preventive factors should be done such that the stratum with the lowest risk becomes the reference category when both factors are considered jointly (rather than one at a time). We used data from a case-control study on the interaction between ACE inhibitors and the ACE gene on incident diabetes. Use of ACE inhibitors was a preventive factor and DD ACE genotype was a risk factor. Before recoding, the RERI, AP and S showed inconsistent results (RERI = 0.26 [95%CI: -0.30; 0.82], AP = 0.30 [95%CI: -0.28; 0.88], S = 0.35 [95%CI: 0.02; 7.38]), with the first two measures suggesting positive interaction and the third negative interaction. After recoding the use of ACE inhibitors, they showed consistent results (RERI = -0.37 [95%CI: -1.23; 0.49], AP = -0.29 [95%CI: -0.98; 0.40], S = 0.43 [95%CI: 0.07; 2.60]), all indicating negative interaction. Preventive factors should not be used to calculate measures of interaction on an additive scale without recoding.

medicus:
Μία γρήγορη επανάληψη των βασικών εννοιών της στατιστικής.







medicus:
Κεντρικό Οριακό Θεώρημα: το άθροισμα και -επομένως- η μέση τιμή, μεγάλου αριθμού ανεξάρτητων παρατηρήσεων, ακολουθεί κατά προσέγγιση κανονική κατανομή, ανεξαρτήτως από το ποια κατανομή ακολουθούν οι παρατηρήσεις.

Πώς, όμως, αυτό το αποτέλεσμα ερμηνεύει τη μεγάλη εφαρμοσιμότητα της κανονικής κατανομής;

Σε πολλά φαινόμενα και πειράματα, οι τιμές διαφόρων χαρακτηριστικών (μεταβλητών), είναι αποτέλεσμα αθροιστικής επίδρασης πολλών ανεξάρτητων αιτίων-παραγόντων κανένα από τα οποία δεν υπερισχύει των άλλων. Για παράδειγμα, ο χρόνος αναμονής σε μια ουρά, είναι αποτέλεσμα πολλών παραγόντων, όπως, η ημέρα της εβδομάδας, η ώρα της ημέρας, η αποτελεσματικότητα του υπαλλήλου, το είδος της συναλλαγής που διεκπεραιώνεται, κ.ά. Επίσης, το βάρος των ζώων μιας κτηνοτροφικής μονάδας, οφείλεται σύμφωνα με τους ειδικούς, σε πληθώρα παραγόντων όπως, η ατομικότητα του ζώου, η φυλή, το γένος, οι συνθήκες διατροφής κ.ά.

Καθένας από τους παράγοντες αυτούς επιφέρει ένα θετικό ή αρνητικό αποτέλεσμα και όλοι μαζί αθροιστικά συντελούν στη διαμόρφωση του τελικού αποτελέσματος. Τέτοια χαρακτηριστικά (μεταβλητές), εμφανίζονται σε πολλά φαινόμενα και πειράματα. Το Κεντρικό Οριακό Θεώρημα λεει ότι αυτά ακριβώς τα χαρακτηριστικά περιγράφονται ικανοποιητικά από την κανονική κατανομή. Επιπλέον, το Κεντρικό Οριακό Θεώρημα συνδέει την κανονική κατανομή με οποιαδήποτε άλλη κατανομή (αφού δεν προϋποθέτει να ακολουθούν οι παρατηρήσεις την κανονική κατανομή), γεγονός το οποίο, απαντάει, επίσης, στο ερώτημα, γιατί η κανονική κατανομή βρίσκει εφαρμογή σε μεγάλο πλήθος φαινομένων και πειραμάτων.

medicus:
Effect Size Calculators

Δεν είναι ορατοί οι σύνδεσμοι (links). Εγγραφή ή Είσοδος

medicus:
Statistical Graphics

Πλοήγηση

[0] Λίστα μηνυμάτων

[#] Επόμενη σελίδα

Μετάβαση στην πλήρη έκδοση